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Abstract
Wavelet Analysis provides an orthogonal basis set which is localized in

both the physical space and the Fourier transform space. We present here
a domain decomposition method that uses wavelet analysis to maintain
roughly uniform error throughout the computation domain while keeping
the computational work balanced in a parallel computing environment.
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1 Introduction

The ability of wavelets to accurately and efficiently represent functions with
localized features [1, 2, 3] has spawned intensive research into applying
wavelets to the solution of partial differential equations. Traditionally, this
effort has been centered around using wavelets as an orthogonal and com-
plete basis, spanning a space of approximate solutions satisfying an equation
in a Galerkin sense [4, 5, 6]. Besides the well known difficulties associated
with such an approach for non-linear problems, there are also challenges to
handling non-trivial boundary conditions in an accurate and stable manner.

Such restrictions on the applicability of wavelet based methods for the
solution of problems of more general intcrest have, in recent years, induced
significant interest into grid-based collocation wavelet methods, [4, 6, 7, 8,
9]. The formulation and implementation of multi-dimensional pure wavelet
collocation methods, however, remains a challenging task.

In the present work we take a somewhat different approach to arrive at
a grid based method exploiting the unique properties of wavelets. Rather
than using the wavelets as a basis, we utilize the ability of wavelets to not
only detect the existence of high-frequency information but also to supply
information about the spatial location of strongly inhomogeneous regions.
Such a region would, in the Galerkin formulation, require one to use many
wavelet coefficients while, within a collocation formulation, it would require
a very fine grid.

The gap between wavelets and finite difference schemes may seem rather
large. However, a very close connection between these two techniques has
recently been established [10, 11, 12]. It has been advocated that wavelets
be used for grid generation and order selection only, while the scheme for
solving the partial differential equation be based solely on finite difference
schemes defined on variable grids. In particular, the differentiation opera-
tors associated with wavelet based collocation methods are in some cases
equivalent to operators appearing from variable grid finite difference opera-
tors [13, 14]. This suggests that wavelet analysis provides the information
required to construct adaptive finite difference schemes on arbitrary grids
with the error estimation based on the wavelet analysis. This interpret ation
alleviates problems associated with non-linear terms and,t o some extent, by
using one-sided finite difference schemes, problems with arbitrary boundary
conditions as well. We shall return to the connection between” collocation
wavelet methods and finite difference schemes in the following section.

Let us now, however, simply claim that wavelets provide the proper tool
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for the formulation of adaptive, arbitrary grid finite difference schemes and
consider the difficulties associated with taking such an approach. Besides
the natural difficulties of implementing an arbitrary grid and arbitrary order
multi-dimensional finite difference method, finite difference schemes defined
on arbitrary grids are known to introduce numerical artifacts [7, 6], resulting
in an amplification of numerical noise. As a consequence, coarsening in
smooth regions of the solution is a less than trivial task – particularly when
considering the use of high-order methods. Moreover, wavelets are best
suited for application on equidistant grids which, for problems beyond one
dimension, suggests a tensor-product approximation. This, on the other
hand, makes the application of such methods hard for problems in complex
domains.

The requirement for a semi-structured grid, and the need for geometric
flexibility, points toward the introduction of a multi-domain formulation as
an appropriate way of progressing. Indeed, as has been realized over the last
decade within the spectral methods community [15, 16, 17], multi-domain
methods alleviate many of the problems associated with the use of high order
methods in complex geometries. In this work, we propose to combine the
geometric flexibility and computational efficiency of a multi-domain scheme
with the adaptivity, facilitated by the wavelet analysis and the associated
finite difference operators, to arrive at a scheme which circumvents most
of the problems discussed above while providing a natural load-balanced
data-decomposition within a parallel framework.

The remaining part of this paper is organized as follows. In Section 2
we discuss the relation between finite-difference methods on arbitrary grids
and the wavelet decomposition based on Daubechies wavelets. To extend
the wavelet based grid and order adaptation to multi-dimensional and geo-
metrically complex problems, we find it necessary to introduce a minimum
amount of structure into the global grid. These issues are addressed in Sec-
tion 3 where we propose to combine the wavelet analysis with a multi-domain
formulation such as to alleviate various problems hitherto associated with
wavelet based methods. A performance analysis is given in Section 4 and
Section 5 contains a few concluding remarks.

2 Wavelet Analysis

Possibly the most instructive way to think of wavelets is in contrast to tradi-
tional analysis techniques such as Fourier analysis. With Fourier analysis we
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analyze discrete or continuous data using basis functions which are global,
smooth and periodic. This analysis yields a set of coefficients, say, a~, which
gives the amount of energy in the data at frequency k. Wavelet analysis, by
contrast, analyzes data with basis functions which are local, slightly smooth,
not periodic, and which vary with respect to scale and location. Wavelet
analysis thereby produces a set of coefficients bj,k which give the amount
of energy in the data at scale j and location k. Wavelet analysis can serve
as a good complement to Fourier analysis. In fact, data which is efficiently
analyzed with Fourier analysis often is not efficiently analyzed with wavelet
analysis and the opposite situation also holds.

For our purposes here we will confine our discussion to the so-called
orthogonal wavelets and specifically the Daubechies family of wavelets. The
orthogonality property leads to a clear indication when data deviates from
a low-order polynomial, the import ante of which will become clear when we
discuss numerical methods.

2.1 Theoretical Background in the Continuous World

To define Daubechies-based wavelets, [Daubechies (1988) and Erlebacher
(1996)], consider the two functions ~(z), the scaling function, and ~(z), the
wavelet. The scaling function is the solution of the dilation equation,

L–1

(i!($) = W ~ hk(b(z~- k), (1)

k=O

which carries the name “ dilation equation” since the independent variable z
appears alone on the left hand side but is multiplied by 2, or dilated, on the
right hand side. One also requires the scaling function 4(z) be normalized:
J’m #(x)d$ = 1. The wavelet ~(~) is defined in terms of the scaling function,

(2)

One builds an orthonormal basis from 4(z) and ~(z) by dilating and
translating to get the following functions:

@j(z) = 2-%95(2-L – k), (3)

and
(4)
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where j, k E Z. j is the dilation parameter and k is the translation param-
eter.

It is usual to let the spaces spanned by ~~(z) and +~ (z) over the param-
eter k, with j fixed, be denoted by Vj and IVj respectively,

(5)

~, = span j
J kez ?h(x)- (6)

The spaces Vj and Wj are related by,

... c VIc Voc v–lc .... (7)

and
Vj= Vj+l@ Wj+l, (8)

where the notation V. = VI @ WI indicates that the vectors in VI are or-
thogonal to the vectors in WI and the space V. is simply decomposed into
these two component subspaces.

The coefficients ~ = {hk}~~~ and G = {gk}~~~ are related by gk =
(–l)kh&k fork= 0,... , L – 1. All wavelet properties are specified through
the parameters H and G. If one’s data is defined on a continuous domain
such as f(z) where z c R is a real number then one uses ~~(r) and +;(z) to
perform the wavelet analysis. If, on the other hand, one’s data is defined on
a discrete domain such as ~(i) where i E Z is an integer then the data is an-
alyzed, or filtered, with the coefficients H and G. In either case, the scaling
function ~(z) and its defining coefficients H detect localized low frequency
information, i.e., they are low-pass filters (LPF), and the wavelet +(z) and
its defining coefficients G detect localized high frequency information, i.e.,
they are high-pass filters (HPF). Specifically, H and G are chosen so that
dilations and translations of the wavelet, ~~ (z), form an orthonormal basis
of L2(R) and so that @(z) has M vanishing moments which determines the
accuracy. In other words, +~ (z) will satisfy

J
CQ.

6k&~= _mwwm)fk (9)

where dk~is the Kronecker delta function, and the accuracy is specified by
requiring that @(z) = @~(z) satisfy

/
mq!(z)zmdz = o,

—co
(lo)

6



forrn=O ,..., i14 – 1. This statement on accuracy can be explained in an
alternative manner. Recall that within the scaling function subspaces Vj one
can reconstruct low order polynomials exactly up to a given order so that
Zo, x’,..., Z“-l can be represented exactly by appropriateely choosing scaling
function coefficients. Accordingly, the subspace Wj which is orthogonal to
Vj and consequently the basis elements ~j (x) of Wj will be orthogonal to all
elements cent ained in Vj such as these low-order polynomials. So, one can
see that by specifying the number of vanishing moments of the wavelets one
has in effect specified the number of polynomials which can be represented
exactly and hence the numerical accuracy of the method.

For representing functions in L2(R) one can see from the above expres-
sions that for any function f(z) ~ L2(R) there exists a set {d,j~} such that

where

d~ =
I

m f(z)tj;(x)dx. (12)
—cc

The two sets of coefficients If and G are known as quadrature mirror
filters. For Daubechies wavelets the number of coefficients in ~ and G, or
the length of the filters II and G, denoted by L, is related to the number of
vanishing moments M by 2M = L. For example, the famous Haar wavelet
is found by defining II as ho = hl = 1. For this filter, II, the solution to
the dilation equation (l), ~(x), is the box function: @(z) = 1 for z E [0,1]
and #(z) = O otherwise. The Haar function is very useful as a learning
tool, but because of its low order of approximation accuracy and lack of
differentiability it is of limited use as a basis set. The coefficients H needed
to define compactly supported wavelets with a higher degree of regularity
can be found in Daubechies (1988). As is expected, the regularity increases
with the support oft he wavelet. The usual notation to denote a Daubechies-
based wavelet defined by coefficients H of length L is DL.

2.2 Practical Implementation in the Discrete World

Naturally, infinite sums and integrals are meaningless when one begins to
implement a wavelet expansion on a computer. One must find appropriate
ways to implement discrete counterparts to the cent inuous operations which
were outlined in the previous subsection. That is, nothing is cent inuous
on a computer and since wavelet analysis was derived in the continuous
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world of differential and integral mathematics is it necessary to consider a
discrete version of the above continuous theory. Generally, operations such
as integration are easily approximated with an appropriate order quadrature
formula, but one would like to use as few quadrature as possible to limit
the number of approximations which are made. We will see in this section
how we can easily perform all the wavelet decompositions with relatively
few approximations.

In a continuous wavelet expansion, functions with arbitrarily small-scale
structures can be represented. In practice, however, depending on the nu-
merical grid resolution or the sampling frequency in a signal processing
scenario, there is a limit to how small the smallest structure can be. Hence,
on a computer an approximation would be constructed in a finite space such
as

vo=l’’vl@VV2e3...@VVJ6vJ,
with the approximation being

with

(13)

s;=Jmj(z)(b;(z)dz
—m

utilizing orthogonality. Within this expansion, the scale j = O is arbitrarily
chosen as the finest scale required, and scale J would be the scale at which a
kind of local average, ~~ (x), provides sufficient large scale information, i.e.
the first term in Eq. (13) provides the local mean around which the function
oscillates.

One must also limit the range of the location parameter, k Assuming
periodicity of ~ (z) implies periodicity on all wavelet coefficients, s; and d~,
with respect to k. For the non-periodic case, since k is directly related to
the location, a limit is imposed on the values of k when the location being
addressed extends beyond the boundaries of the domain.

The wavelet decomposition matrix is the matrix embodiment of the di-
lation equation, Eq. (1), defining the scaling function and the accompanying
equation defining the wavelet, Eq. (2). The following two recurrence relations
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for the coefficients, s; and d~, in Eq. (13) are given as

L L

n=l n=]

as obtained from Eqs. (l)-(2), and we recall that hn refers to the chosen filter
while we have gn = –(–l)nhL_n.

Denote the decomposition matrix embodied by these two equations, as-
suming periodicity, by F’#+l where the matrix subscript denotes the size
of the square matrix while the superscripts indicate that P is decomposing
from scaling function coefficients at scale j to scaling function and wavelet
function coefficients at scale j + 1, i.e. F’#+l maps .?’ onto 7’+1 and ~+1:

(14)

where we by Fj refer to the vector containing the coefficients at scale j. Note
that the vectors at scale j + 1 are half as long as the vectors as scale j.

Suppose, for illustration, the wavelet being used is the four coefficient D4
wavelet, and that one wants to project from 8 scaling function coefficients
at scale j to 4 scaling function coefficients at scale j + 1 and 4 wavelet
coefficients at scale j + 1. The decomposition matrix for the case of periodic
boundary conditions, Pj’~+l, thus becomes

h1h2h3h40000
OOh1h2h3h400
OOOOh1h2h3h4
h3 h4 O OOOhlh2

919293940000
ooglg2g3g400
Ooooglgzgsgl
g3g40000glg2

(15)

where the periodicity is reflected in the coefficients being wrapped around.
If the boundary conditions are not periodic, then one must extend the data
and the scaling function coefficients at every scale in a “smooth” manner.
This involves extending the scaling function data with a polynomial one
order higher than the number of vanishing moments of the wavelet. But,
for the purpose of understanding the method, it is sufficient to study the
periodic matrix such as the one that we have created above. It is a matrix
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such as ~~’~+1 that is applied directly to the data and then directly to
each level of scaling function coefficients. To be perfectly correct one would
first approximate the scaling function coefficients at the finest scale using
the raw data, however, in practice it seems to make very little difference
if one simply considers the raw data to be the scaling function coefficients.
So, for our purposes here we will simply use the raw data as the scaling
function coefficients on the finest scale. The repeated application of the
matrix p~’~+l yields the wavelet coefficients at the various scales, and it
is these wavelet coefficients that provide a guide to the errors committed
during the numerical calculation, as will be further illustrated in the next
paragraph and explained precisely in the next section.

Let us consider that the raw data is given and it is assumed to be the
scaling function coefficients on the finest scale, FO.One wavelet decomposi-
tion yields the scaling function coefficients and wavelet coefficients at scale+
~ = 1, JI and dI.. A second application of the wave$t decomposition matrix
will yield the vectors .?2and d2. It is the vectors dl, 12, ... which yield the
critical information on the numerical errors. If, for example, one sees that
the values of the ~1 are relatively large in the middle of the vector, then it is
clear that within this one dimensional vector the largest errors will be in the
middle of the one dimensional domain from which this vector was derived.

3 A Wavelet Based Multi-Domain Scheme

In the first part of this paper, we discussed several advantages to our ap-
proach of exploiting the close connection between finite-difference methods
and wavelets so that wavelets are used to adaptively select grids while a
finite-difference methodology is used to compute derivatives. By restricting
the computation between the wavelet-based adaptation phases so that the
product of the number of grid points in a subdomain and the order used
in the sub domain remains constant, our method maintains an equal com-
putational load on all subdomains and is thus optimally load balanced. In
addition, since the computation is performed in the physical space rather
than the transform space, non-linear terms and finite computational domains
pose no significant problems.

So far, the discussion has focused on equidistant or Chebyshev grids. The
multidimensional extension of this approach uses tensor products which re-
quire the computational domain to be diffeomorphic to the unit square /cube
thereby limiting the type of problems to which this approach can be applied.
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There are several ways to circumvent this restriction. For example, one may
simply embed the general computational domain into a simple rectangular
domain approximating the boundaries using stair-casing. While this ap-
proach works well with low-order finite difference methods, it causes severe
problems with high-order methods. This has prompted us to combine the
high spatial accuracy and adaptivity of simple domains with the geometric
flexibility provided by a multi-domain formulation.

In this scenario, the geometrically complex computational domain is de-
composed into a number of simple geometric building blocks, (e.g. quadrilat-
erals/hexahedrals), in which a tensor product formulation can be straight-
forwardly applied. This offers geometric flexibility and lends itself to a par-
allel implement ation. A discussion of additional advantages, problems, and
general methodology of multi-domain schemes can be found in [15, 16, 17].

Once we have completed the domain decomposition, we can apply the
ideas of the previous section to each subdomain. That is, we can perform
the wavelet analysis and adaptivity within each sub domain.

As an illustration, let us consider the solution of the linear two-dimensional
wave equation

(16)

where u = u (z, y, t) and the initial conditions are taken to be a Gaussian
pulse of the form

[

(x - z~)’ _ (Y -YO)2U(Z, Y, O) = =p – 62
J;

1
>

x

where ($0, y.) signifies the center of the pulse and (dZ, 6V) the variance along
z and y, respectively. The exact solution is given by convecting the initial
condition with the velocity (1, 1).

Now, let the 2D decomposition result in 16 equally sized squares, see Fig.
(1). In each domain, we solve the equation on an adaptive grid maintaining a
4th order scheme. Grid adaptation can be performed using full adaptation
within each block where the grids within each block may be completely
unstructured or block-wise adapt ation where the grids within each block
remain regular but may vary between adjscent sub domains. While the first
option is more general, it is nontrivial to implement such a scheme efficiently.
Refining only on a block-wise course-grain skeleton, retains the structure
within each sub domain while allowing a significant degree of adapt ation.
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After several timesteps, wavelets are used to detect regions of the com-
putational domain which contain small structure. The scale of this informa-
tion is determined by the magnitude of the wavelet coefficients. Once these
regions are discovered, the number of grid points and order are adjusted
accordingly, while keeping the product of the grid points and order constant
(fig. 1). In other words wavelets are used to keep the Lm error roughly
uniform throughout the domain. Instead of adjusting the grid density and
numerical order at each point, it is done block by block.

4x32 8X16 4x32 4x32

18X1618X1614X3212
8X16 8X16 4x32 2x64

Figure 1: Sub domains with equal computational granularity.

Patching of the scalar wave equation, Eq. (16), is performed by communi-
canting information across boundaries along the direction of propagat ion, i.e.
out-flowing information from one sub domain enters the adjacent sub domain
as inflow/boundary conditions.

One of the challenges of multi-domain methods is to ensure that the cor-
rect global solution is achieved by solving a number of smaller local problems.
The construction of proper patching remains an area of active research. So-
lution are typically problem specific. The adaptive framework that we have
set up here, however, is independent of the specifics of patching schemes and
the problem being solved, since the wavelet analysis essentially is applied as
in a signal analysis approach.
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Figure 2: Gaussian Pulse Propagating across domain.

Figure (2) shows the Gaussian pulse propagating diagonally across the
domain. One can see the changing grid point density. As the grid becomes
more dense, the computational order is decreased thereby keeping the work
in each sub domain fixed.

The observant reader may notice that the subdomain grids in Fig. (1)
are non-uniform. Indeed, when using a 4th order scheme in each sub domain
there is no reason a uniform grid could not be used provided it is terminated
in a stable manner using a 3rd order one sided stencil. However, as discussed
in [11] there is no reason why one cannot also adapt the order oft he scheme
used in each subdomain, employing high order schemes in regions with course
grids, reflecting smooth solutions, and low order schemes in regions with
great variation and very fine grids. In order to do so, i.e. to use schemes of
order higher than 4, we must however cluster the grids to maintain stability.
The error estimator is found to yield reliable estimates provided Lm is set to
scale with the order of the scheme, reflecting the higher regularity assumed
to exist when using high order schemes.

Adapting order as well as grid density has, aside from the numerical ad-
vantages of high-order methods in connection with long-time integration, the
potential of offering optimal load-balancing in a parallel setting as the num-
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ber of grid points times the order of the scheme, providing an approximate
measure for the overall work, can be kept close to constant. Furthermore,
one of the goals of any numerical method is to minimize the error for a given
computational cost. Fundamentally, this means approximating the data ef-
fectively with low-order local polynomial approximations, the error being
given by the truncation error. In other words, rough localized features are
approximated most effectively by low order polynomials with a high den-
sity of grid points while smooth large-scale features are approximated most
effectively by high order polynomials on a coarse grid. For this reason, we
increase the order of the numerical method as we decrease the grid point
density. In addition to maximizing the computational efficiency, the work
remains constant in all the sub domains.

4 Performance Analysis

To analyze the predicted performance of this technique, we note the total
computation time, TtOt,can be described as,

Ttot = TcOmP+ Tcomm (17)

where Tcomp is the total time spent in the comput ation phase and TcOmm
is the total time spent in processor communication. Tcommis composed of
two components, T. and Tw where T. is the startup time to initiate inter-
processor communication and Tw is the time to transmit a single word, see
[19]. Thus the total communication time is:

T.omm=T~+L+Tw (18)

where L is the number of words to be transmitted. The computation time
is composed of two components Tk, Twt where Tk is the kernel computation
or the actual time spent calculating the derivative on the grid points, and
Twt is the time to compute the wavelet transform.

The number of floating point operations spent by a single node on the
derivative computation is Gz * Oi where Gi is the number of grid points at
node i and Oi is the order of computation at node i. (This is not entirely
accurate. Depending upon the order there may be additional terms. For
the sake of brevity we will ignore these terms since they don’t substantively
affect the resulting analysis of the method.) What this technique proposes
is to keep Gi * Oi = K over all the nodes where K is a constant which we
are calling the computational granularity.
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Now at each iteration only one floating point value needs to be commu-
nicated across the boundary to an adjacent node. Furthermore, the wavelet
transform is computed locally thus L in the communication equation is equal
to exactly 1 so

T – T. +Tw.comm — (19)

For now, lets ignore Twt and consider the relationship between Tk and TComm.
The method will be computation bound iff Tk >> TCOmm. Similarly it

.Omm>> T~. But Tk = K/FlopRate.will be communication bound iff T
For Tk >> TComm,K >> FZopRate * (T. + Tw). Using typical values for
an IBM SP2, see [19], an example bound for K can be approximated as
K >> 200Mjlop/s * (4.Olrns + O.llms) or K >>840. Recall, since K =
Gz * Oi and since O is typically in the range [0, 4], for values of Gi >>210,
this method is computation bound. This is not an unreasonable value for
scientific computations so in most cases the method won’t be communication
bound.

To compute the effect of TWt,we note that the cost of the wavelet trans-
form is O(G) where G is the total number of grid points (or O(~&~NO~eS Gj).

The wavelet transform does not need to be calculated every timestep
and as the number of timesteps between transforms increases, the cost of the
wavelet transform will becomes less significant. Since in the transform phase
each node is computing the full wavelet transform and since the computation
phase is load-balanced by keeping the computational granularity constant,
the complete method will be perfectly load balanced.

5 Conclusion

The purpose of this work has been two fold. In the first part we set
out to show the close connection between differentiation based on the use
of Daubechies wavelets and that of traditional centered finite difference
schemes. Indeed, the capability for data compression, being the main ar-
gument for the use of wavelet methods, manifests itself in finite difference
methods as the possibilityy for the use of variable grid schemes. Hence, we
concluded, based on the above connection as well as a careful discussion of
the problems associated with pure wavelet methods, that the proper way
of using the wavelets is for identifying exactly where to refine and coarsen
the computational grids to maintain a given accuracy, while the well known
finite difference framework should be chosen for actually computing deriva-
tives. Besides from the intuitive ease of the grid based approach, it also
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offers advantages when the need to deal with boundary conditions or non-
linear terms arises.

Extending the wavelet optimized finite difference methods to multi di-
mensional problems involves the introduct ion of tensor product grids with
the resulting loss of geometric flexibility. To overcome this, we showed
how to use a multi-domain formulation in which each geometrically simple
sub domain is being dealt with in a straightforward extension of the one-
dimensional framework, while the multi-domain setting provides a global
skeleton that makes the implementation less troublesome. The block adap-
tivity proposed here yields significant savings even for a problem as simple
as the linear wave equation while eliminating several problems hitherto asso-
ciated with wavelet optimized finite difference schemes. Moreover, an order
and grid adaptive scheme provides advantages in terms of load balancing
with a parallel setting.

The generalization of the present framework to problems of more com-
plicated character, i.e. problems of electromagnetic and acoustics, poses no
significant algorithmic problems and we hope to report on such development
in the near future.

Since one of the goals of this method is to achieve near uniform error, an
extension of this study would be to compute the exact error introduced when
considering variations in the time step, the number of time steps between
wavelet analyses and granularity of the domain decomposition.

We are currently implementing this scheme in a massively parallel envi-
ronment to verify predicted performance with quantitative results.
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